Lagrange Multiplier (Part II)

Liming Pang

1 Why the Method of Lagrange Multiplier
Works

Now let’s explain why the method of Lagrange multiplier works. We will
study the situation for optimizing a to variable function f(z,y) under the
constraint g(x,y) = c¢. The cases with more variables or more constraints
can be shown in the similar fashion.

If (29, o) is & maximum/minimum point of f(x,y) under the constraint
g(z,y) = ¢, we need to show that V f(z, o) is parallel to Vg(zo,yo). Sup-
pose they are not parallel. Since gradient is normal to level sets, we see
that the assumption implies the level set f(z,y) = f(zo,yo) and the level set
g(x,y) = c are not tangent at the intersection (zo,yo). Then it means on
each side of f(x,y) = f(xo,yo), there are points on g(z,y) = ¢, and for points
on one of the two sides, the values under f is larger than f(z,yo). This can
be shown as in the following figure. The following figure shows what’s going
on.




We can also draw a 3-dimensional figure to illustrate:
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Algebraically, we can apply the Implicit Function Theorem. By assump-
tion, Vg(zo, yo) = (%(1’07?/0)7 g—’;(xo, Yo)) # 0, we may assume g—jj(xo,yo) # 0.
This condition implies g(x,y) = ¢ implicitly defines a function y = h(x) near
(20, Yo) such that g(z, h(z)) =0 and yo = h(x).
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By Implicit Function Theorem, we know that h'(xy) = —M. Define
By \L0:Y0

¢(z) = f(x,h(x)), then the assumption that (xg,yo) is an extreme point for
the constraint optimization indicates that z is an extreme point for ¢(z), so

¢ (xz)=0.
By the Chain Rule, we see
Y o af af ! o of 0 %(%JJO)
0=¢'(z) = 8x(x0’yo)+8y (o, Yo) W' (o) = 8$($07y0) oy (0, Yo) g—Z(xo,yo)
i.e.
af dg af dg

%(xoayo)a—y(xmyo) = a—y(xoayo)%(xmyo)

This implies V f (o, yo) is parallel to Vg(zo,yo), since if %(xo,yo) £ 0, we

x

of of
L (@om0) 5y (®o.yo) . e dg .
see Birown) — Tmown) Let A # 0 be this ratio; if 5%(wo,50) = 0, we get

g—i(azo, yo) = 0 as well, this is the case for A = 0.



2 Interpretation of the Lagrange Multiplier

In this section we will explore what information the Lagrange multiplier A
can bring to us.

Assume (¢, yp) is a maximal point for f(z, y) subject to constraint g(x,y) =
c. We thus know:

V f(xo, o) = AVg(zo,y0)
9(xo,y0) = ¢

Now we would like to know how the constraint optimal value changes if
we change the constraint constant from ¢ by a small change to some ¢’
Recall that given a function f(z,y), there is a differential

df = %(%J/o)dl' + g—;(iﬁoa Yo)dy
which gives a good estimation of how the value of the function changes if z, y
are changed by small amount dx, dy respectively from xq, 3.
Now assume the new extreme point of f subject to the constraint ¢ is
obtained from (zg,y0) by a change of (dx,dy), we get the corresponding
change in the value of f to be

df = %(xo,yo)dx + g—]yc(xoa Yo)dy
= (%(fﬁo,yo)a g_;;(mo,yo)) - (dx, dy)
= (%(any0)> g—i(ﬂfo,?/o)) - (dx, dy)
= (g—i(%, Yo)dx + g—z(%, Yo)dy)
= A\dg
=\ —¢)

The above computation leads to the following theorem:

Theorem 1. If the constraint is changed by a small amount from g(z,y) = ¢
to g(x,y) = ¢, then the optimal value will change by about \(c' — ¢), where
A 15 the Lagrange multiplier.



Another way of explanation is that if we denote P to be the optimal value
of f(z,y) subject to the constraint g(z,y) = ¢, then P can be regarded as a

function of ¢, i.e. P = P(c), then the above argument indicates A = 4C.

Example 2. There is an economic understanding of the above discussion:

A company is producing two brands, A and B. When producing x units of
A and y units of B, the cost is g(x,y) dollars and the profit is f(z,y) dollars.
Currently the company inputs ¢ dollars everyday, and the daily profit is P
(i.e. the mazimum value for f(x,y) subject to the constraint g(z,y) = c is
P). If we know at this point the Lagrange multiplier \, then if the daily input
increases by 1 dollar, the daily profit will increase by about A dollars.

In economics, the Lagrange multiplier is called the shadow price of the
resource. It is the marginal profit with respect to the budget.

Example 3. Now let’s compute a concrete example to see how well the La-
grange multiplier estimates the actual change of optimal value. We are re-
visiting Example 4 in Part I:

A person has utility function u(x,y) = 10xy + bz + 2y. Suppose the price
for one unit of x is 2 dollars and the price for one unit of y is 5 dollars. If
the person has 100 dollars that can be spent on x and y, find v and y that
mazimize the utility.

The question is to mazimize u(x,y) = 10xy+5x+ 2y under the constraint
2z + 5y = 100.
Let g(x,y) = 2x + by, by the Lagrange method, we have

{VU(fc,y) = AVg(z,y)

g(x,y) =100
1.€.
10y +5=Ax2
1W0r+2=Ax5
2z + 5y = 100

We get A = 51.45, x = 25.525, y = 9.79, the mazimal utility is u(25.525,9.79) =
2646.1025
Now assume the person has 1 more dollar in budget, we have

{W(I,y) = AVg(z,y)
g(x,y) =101
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1.€.

10y +5=Ax%x2
10x+2=Ax5
2z + by = 101

We get A = 51.95, & = 25.7755,y = 9.89, the mazimal utility is u(25.7755,9.89) =

2697.85445
So the actual increase of maximal utility is 2697.85445 — 2646.1025 =

51.75195, and the initial Lagrange multiplier for budget being 100 dollars is
51.45, which is close to the actual increase.



